CSCI 2320: Principles of
Programming Languages

Object-Oriented
Programming (OOP)

Reading: Ch 13

Mohammad T. Irfan

Imperative vs.
object-oriented
paradigms

OOP Principles

Examples: Java

OOP principles

Inheritance
Polymorphism

Encapsulation

B w e

Abstraction

They typically interact with one another.

1. Inheritance

Inheritance in picture

Hierarchical organization

Superclass variables
and methods

Inheritance in Java

Multiple superclasses

Multiple subclasses

\
\/ (\
Chain of inheritance

Superclass

Inheritance Demo

coO~NOUT S, WN -

//Ref: Java the Complete Reference
//Superclass
o] public class PlainBox
{
private double width;
private double height;
private double depth;

// constructor
PlainBox(double w, double h, double d)

{
width = w;
height = h;
depth = d;
}

// compute and return volume
double getVolume() {

return width x height x depth;
}

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

!

// Here, PlainBox is extended to include weight.
class WeightedBox extends PlainBox

{

private double weight; // weight of box
// constructor for WeightedBox
WeightedBox(double w, double h, double d, double m)

{

}

//super(...) must be the first line to call Superclass constr
//unless superclass has a "default constructor" (no parameter)
super(w,h,d);

weight = m;

double getWeight()

{
¥

return weight;

Chain of inheritance
(Multilevel inheritance)

New class for shipping a box, inherits
WeightedBox

class Shipping extends WeightedBox
{

private double unitCost;
Shipping(double w, double h, double d, double m, double c)

{
super(w, h, d, m);
unitCost = c;
I3
double getTotalCost()
{
return getVolume() * getWeight() * unitCost;
I3

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

>

Demo

class Demo

{

public static void main(String args[]) {
//Superclass object (not mandatory, just for demo)
PlainBox mybox1l = new PlainBox(w: 10, h:ZOL d: 15);
//Subclass object
WeightedBox mybox2 = new WeightedBox(w: 2, h:3, d: 4, m:5.5);
//Subclass object of the previous subclass
Shipping parcel = new Shipping(w: 5, h:1@, d:20, m:15, c:0.01);

System.out.println("Volume of myboxl is " + myboxl.getVolume());
System.out.println("Volume of mybox2 is " + mybox2.getVolume());
System.out.println("Weight of mybox2 is " + mybox2.getWeight());
System.out.println("Total shipping cost is $" + parcel.getTotalCost())

Volume of mybox1l is 3000.0
Volume of mybox2 is 24.0
Weight of mybox2 is 5.5

Total shipping cost is $150.0

2. Polymorphism

Functional vs.
dynamic polymorphism

OOP Polymorphism

Why is OOP polymorphism called
dynamic?

CONOULTESE WN -

.’g:)fl

//Class for a simple box

class PlainBox

{
private double width;
private double height;
private double depth;

// constructor
PlainBox(double w, double h, double d)

{

width = w;
height = h;
depth = d;

}

// multiply all dimensions (= volume)
double multiply()
{

}

return width *x height x depth;

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37 @

38
39
40
41

// Here, PlainBox is extended to include weight.
class WeightedBox extends PlainBox

{

private double weight; // weight of box
// constructor for WeightedBox
WeightedBox(double w, double h, double d, double m)
{
//super(...) to call superclass constructor
super(w,h,d);
weight = m;

}
double getWeight()
{

return weight;
}

//Method overriding
double multiply() //multiply all dimensions & weight
{

}

return super.multiply()x*xweight; //new use of super

Superclass' multiply method is hidden from the subclass
unless the subclass explicitly calls it using super

42 » public class BoxDemo

43 {

44 » public static void main(String[] args)

45 {

46 PlainBox pbox1l = new PlainBox(w: 20, h:5, d:10);

47 WeightedBox wboxl = new WeightedBox(w: 3, h:4, d:5, m:2);
48

49 System.out.println(pboxl.multiply()); //Superclass method
50 System.out.println(wbox1l.multiply()); //Subclass overriden method
51

52 //Interesting stuff

53 PlainBox pbox2 = new WeightedBox(w: 1, h:2, d:3, m:4);

54 //Dynamic/run-time polymorphism—— which method to call?

55 System.out.println(pbox2.multiply());

56 //Compiler error:

57 //System.out.println(pbox2.getWeight());

58 }

59 }

1000.0
Output 120.0
24.0

3. Encapsulation

Encapsulation Demo

Encapsulation example: Book
class

* Want a class for representing certain information
about a book
* Note: each object is one single book
* Multiple objects 2 many books

1. What are the attributes or properties of a
book?

2. What are the actions or behaviors that you can
apply on book data?
 Helps with data abstraction

//Source: http://www.javaworld.com/article/2979739/
// learn-java/java-101-classes—and-objects—in-java.html
public class Book

{

private String title;
private int pubYear; // publication year
static int count; //how many book objects?

Book(String _title, int _pubYear) //constructor

{
title = _title;
pubYear = _pubYear;
++count;

}

Book(String title) //another constructor: overloading

{
setTitle(title);
setPubYear(-1);
++count;

}

String getTitle()
{

}

return title;

int getPubYear()

{
return pubYear;

s

void setTitle(String title)

{
//this.title is instance var, title is parameter
this.title = title;

s

void setPubYear(int pubYear)

{
//this.pubYear is instance var, pubYear 1s parameter
this.pubYear = pubYear;

s

static void showCount()

{
}

System.out.println("# of objects = " + count);

public static void main(String[] args)

{
Book bookl = new Book(_title: "A Tale of Two Cities", _pubYear: 1859);
Book book2 = new Book(_fitle: "Moby Dick", _pubYear: 1851);
Book book3 = new Book(title: "Unknown") ;

System.out.println(bookl.getTitle()); // Output: A Tale of Two Cities
System.out.println(book2.getTitle()); // Output: Moby Dick
System.out.println(book3.getPubYear()); // Output: -1
Book.showCount(); // Output: count = 3

bookl book?2 book3

A Tale of Two Cities Moby Dick Unknown

1859 1851 -1

Shared/static class variable: count = 3
Methods are also shared

Encapsulation question

Build on the Book class to include author names.
How would you represent multiple authors?

4. Abstraction

Abstraction Demo

Abstract class in Java

* Give high-level ideas while hiding
implementation details

* Use: manage complexity

 Next few slides

* Abstract class Shape outlines a geometric shape
* Which shape?
» getArea(): Area depends on shape!
» Subclasses of Shape: defines the getArea() method

e Rectangle
* Triangle

Cannot create any object of abstract class!

O~NOUT S WN -

o]

o

//Basic geometric shape class
abstract class Shape
{
String name; //name of the shape
double[] dims;

//Constructor will only be used by subclasses
Shape(String name, double[] dims)
{
this.name
this.dims

name;
dims;

}
String getName()

{

}
abstract double getArea(); //not defined here

return name;

20
21
22
23
24
25
26
27
28
29
30
31
32

)

//Simple rectangle
class Rectangle extends Shape

{

Rectangle(double w, double h)

{
}

super(name: "Rectangle"”, new double[]l{w,h});

double getArea()

{
}

return dims[0]xdims[1];

class Triangle extends Shape

{
Triangle(double s1, double s2, double s3)
{

super(name: "Triangle", new double[]{sl,s2,s3});

}
double getArea()
{
double peri = (dims[0]+dims[1]+dims[2])/2;
return Math.sqrt(peri *x (peri-dims[0]) x
(peri-dims[1]) x
(peri-dims[2]));
}

public class AbstractDemo

{
public static void main(String argsl[])
{
Rectangle r = new Rectangle(w: 5, h: 10);
Triangle t = new Triangle(s1: 18, s2: 20, s3: 24);
System.out.println(r.getName() + ": " + r.getArea());
System.out.printin(t.getName() + ": " + t.getArea());
I3
}

T — Re&tangle: 50.0
YIPUL Triangle: 176.1561807033747

Encapsulation vs abstraction vs
information hiding

* Debates on orthogonality of concepts

* Roughly—-
data abstraction (capsule) vs
process abstraction (generalization)

* http://www.tonymarston.co.uk/php-
mysql/abstraction.txt
e By Edward V. Berard

http://www.tonymarston.co.uk/php-mysql/abstraction.txt
http://www.tonymarston.co.uk/php-mysql/abstraction.txt

Snapshot of debate

“Encapsulation or equivalently information hiding
refers to the practice of including within an object
everything it needs and furthermore doing this in
such a way that no other object need ever be aware
of this internal structure.”

-- [lan Graham, 1991]

“If encapsulation was "the same thing as information
hiding," then one might make the argument that
"everything that was encapsulated was also hidden."
This is obviously not true. ... It is indeed true that
encapsulation mechanisms such as classes allow
some information to be hidden. However, these
same encapsulation mechanisms also allow some
information to be visible. Some even allow varying
degrees of visibility, e.g., C++'s public, protected, and
private members.”

-- Edward V. Berard

Encapsulation: good definition

“Encapsulation is used as a generic term for
techniques which realize data abstraction.
Encapsulation therefore implies the provision of
mechanisms to support both modularity and
information hiding. There is therefore a one to one
correspondence in this case between the
technique of encapsulation and the principle of

data abstraction.”
-- [Blair et al, 1991]

Abstraction: good definition

"Abstraction is generally defined as 'the process of
formulating generalised concepts by extracting
common qualities from specific examples."™

-- [Blair et al, 1991]

